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Abstract
The radiation reaction problem for an electric charge moving in flat spacetime
of three dimensions is discussed. The divergences stemming from the pointness
of the particle are studied. A consistent regularization procedure is proposed,
which exploits the Poincaré invariance of the theory. Effective equation of
motion of radiating charge in an external electromagnetic field is obtained via
the consideration of energy-momentum and angular momentum conservation.
This equation includes the effect of the particle’s own field. The radiation
reaction is determined by the Lorentz force of point-like charge acting upon
itself plus a non-local term which provides finiteness of the self-action.

PACS numbers: 03.50.De, 11.10.Gh, 11.30.Cp, 11.10.Kk

1. Introduction

There has been much recent interest [1, 2] in the renormalization procedure in classical
electrodynamics of a point particle moving in flat spacetime of arbitrary dimensions. The
main task is to derive the analogue of the well-known Lorentz–Dirac equation [3]. The
Lorentz–Dirac equation is an equation of motion for a charged particle under the influence of
an external force as well as its own electromagnetic field. (For a modern review see [4–6].)

A special attention in [1, 2] is devoted to the mass renormalization in 2+1 theory. (Note
that electrodynamics in the Minkowski space M3 is quite different from the conventional
3+1 electrodynamics where one space dimension is reduced because of the symmetry of the
specific problem. For example, small charged balls on a plane are interacted inversely with the
square of the distance between them, while in M3 the Coulomb field of a small static charged
disc scales as |r|−1.) An essential feature of 2+1 electrodynamics is that the Huygens principle
does not hold and radiation develops a tail, as it is in curved spacetime of four dimensions [7]
where electromagnetic waves propagate not just at the speed of light, but all speeds smaller
than or equal to it.
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In [1, 2] the self-force on a point-like particle is calculated from the local fields in the
immediate vicinity of its trajectory. The schemes involve some prescriptions for subtracting
away the infinite contributions to the force due to the singular nature of the field on the particle’s
world line. In [2] the procedure of regularization is based on the methods of functional analysis
which are applied to the Taylor expansion of the retarded Green’s function. The authors derive
the covariant analogue of the Lorentz–Dirac equation which is something other than that
obtained in [1]. Both the divergent self-energy absorbed by ‘bare’ mass of point-like charge,
and the radiative term which leads an independent existence, are non-local. (They depend not
only on the current state of motion of the particle, but also on its past history.)

In this paper, we develop a consistent regularization procedure which exploits the
symmetry properties of 2+1 electrodynamics. It can be summarized as a simple rule which
obeys the spirit of Dirac scheme of decomposition of vector potential of a point-like charge.

According to the scheme proposed by Dirac in his seminal paper [3], one can decompose
the retarded Green’s function associated with the four-dimensional Maxwell field equation
Gret(x, z) = Gsym(x, z) + Grad(x, z). The first term, Gsym(x, z), is one-half sum of the
retarded and the advanced Green’s functions; it is just singular as Gret(x, z). The second
one, Grad(x, z), is one-half of the retarded minus one-half of the advanced Green’s functions;
it satisfies the homogeneous wave equation. Convolving the source with Green’s functions
Gsym(x, z) and Grad(x, z) yields the singular and the radiative parts of vector potential of a
point-like charge, respectively.

The analogous decomposition of Green’s function in curved spacetime is much more
delicate because of richer causal structure. Detweiler and Whiting [9] modify the singular
Green’s function by means of a two-point function v(x, z) which is symmetric in its arguments.
It is constructed from the solutions of the homogeneous wave equation in such a way that
a new symmetric Green’s function GS(x, z) = Gsym(x, z) + 1/(8π)v(x, z) has no support
within the null cone.

The physically relevant solution to the wave equation is obviously the retarded solution.
In [10], the Lorentz–Dirac equation is derived within the framework of retarded causality.
Teitelboim substitutes the retarded Liénard–Wiechert fields in the electromagnetic field’s
stress–energy tensor. The author computes the flow of energy-momentum which flows across
a tilted hyperplane which is orthogonal to particle’s four-velocity at the instant of observation.
The effective equation of motion is obtained in [10] via the consideration of energy-momentum
conservation. Similarly, López and Villarroel [11] find out the total angular momentum carried
by electromagnetic field of a point-like charge.

Outgoing waves carry energy-momentum and angular momentum; the radiation removes
energy, momentum and angular momentum from the source which then undergoes a radiation
reaction. It is shown [12] that the Lorentz–Dirac equation can be derived from the energy-
momentum and angular momentum balance equations. In [13] the analogue of the Lorentz-
Dirac equation in six dimensions is obtained via analysis of 21 conserved quantities which
correspond to the symmetry of an isolated point particle coupled with electromagnetic field.
(First, this equation was obtained by Kosyakov in [14] via the consideration of energy-
momentum conservation. An alternative derivation was produced by Kazinski, Lyakhovich
and Sharapov in [2].)

In non-local theories, the computation of Noether quantities is highly nontrivial. Quinn
and Wald [15] study the energy-momentum conservation for point charge moving in curved
spacetime. The Stokes’ theorem is applied to the integral of flux of electromagnetic energy
over the compact region V (t+, t−). It is expanded to the limits t− → −∞ and t+ → +∞, so
that finally the boundary of the integration domain involves smooth spacelike hypersurfaces
at the remote past and in the distant future. The spacetime is asymptotically flat here. The
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authors prove that the net energy radiated to infinity is equal to the total work done on the
particle by the electromagnetic self-force. (DeWitt–Brehme [7, 8] radiation reaction force
is meant.) It is shown also [15] that the total work done by the gravitational self-force is
equal to the energy radiated (in gravitational waves) by the particle. (The effective equation of
motion of a point mass undergoing radiation reaction is obtained in [16]; see also review [17]
where the motion of a point electric charge, a point scalar charge and a point mass in curved
spacetime is considered in detail.)

In the present paper, we calculate the total flows of energy-momentum and angular
momentum of the retarded field which flow across a hyperplane �t = {y ∈ M3 : y0 = t}
associated with an unmoving observer. It is organized as follows. In section 2, we recall the
retarded and the advanced Green’s functions associated with the three-dimensional D’Alembert
operator. Convolving them with the point source, we derive the retarded and the advanced
vector potential and field strengths. In the appendix , we trace a series of stages in calculation
of surface integral which gives the energy-momentum carried by the retarded electromagnetic
field. We integrate the Maxwell energy-momentum tensor density over the variables which
parametrize the surface of integration �t . Resulting expression becomes a combination of
the two-point functions depending on the state of particle’s motion at instants t1 and t2 before
the observation instant t. They are integrated over particle’s world line twice. We arrange
them in section 3. We split the momentum three-vector carried by electromagnetic field into
singular and radiative parts by means of Dirac scheme which deals with the fields taken on
the world line only. All diverging quantities have disappeared into the procedure of mass
renormalization while radiative terms lead an independent existence. In analogous way we
analyse the angular momentum of electromagnetic field. Total energy-momentum and total
angular momentum of our particle plus field system depend on already renormalized particle’s
individual characteristics and radiative parts of Noether quantities. In section 4, we derive
the effective equation of motion of radiating charge via analysis of balance equations. In
section 5, we discuss the result and its implications.

2. Electromagnetic field in 2+1 theory

We consider an electromagnetic field produced by a particle with δ-shaped distribution of the
electric charge e moving on a world line ζ ⊂ M3 described by functions zµ(τ ) of proper time
τ . The Maxwell equations

Fαβ
,β = 2πjα, (2.1)

where current density jα is given by

jα = e

∫ +∞

−∞
dτ uα(τ )δ(3)(y − z(τ )), (2.2)

governs the propagation of the electromagnetic field. uα(τ) denotes the (normalized) three-
velocity vector dzα(τ )/dτ and δ(3)(y − z) = δ(y0 − z0)δ(y1 − z1)δ(y2 − z2) is a three-
dimensional Dirac distribution supported on the particle’s world line ζ . Both the strength
tensor Fαβ and the current density jα are evaluated at a field point y ∈ M3.

We express the electromagnetic field in terms of a vector potential, F̂ = dÂ. We impose
the Lorentz gauge Aα

,α = 0; then the Maxwell field equation (2.1) becomes

�Aα = −2πjα. (2.3)
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In 2+1 theory, the retarded Green’s function associated with the D’Alembert operator
� := ηαβ∂α∂β has support not just on the future light cone of the emission point x, but
extends inside the light cone as well [1, 2]:

Gret
2+1(y, x) = θ(y0 − x0 − |y − x|)√

−(y − x)2
, (2.4)

where θ(y0 − x0 − |y − x|) is a step function defined to be one if y0 − x0 � |y − x|, and
defined to be zero otherwise.

Convolving the retarded Green’s function (2.4) with charge–current density jα(x), we
construct the retarded Liénard–Wiechert potential Aret

µ (y) in three dimensions. It is generated
by the point charge during its entire past history before the retarded time τ ret(y) associated
with the field point y. Apart from non-local term

F (θ)
µν = −e

∫ τ ret(y)

−∞
dτ

uµKν − uνKµ

[−(K · K)]3/2
, (2.5)

the strength tensor F ret
µν = ∂µAret

ν − ∂νA
ret
µ of the adjunct electromagnetic field contains also

local term

F (δ)
µν = lim

τ→τ ret

e√−(K · K)

uµKν − uνKµ

−(K · u)
, (2.6)

which is due to the differentiation of θ -function involved in Aret
µ (y). (By Kµ = yµ − zµ(τ ),

we denote the unique timelike (or null) vector pointing from the emission point z(τ ) ∈ ζ to a
field point y.)

The terms separately diverge on the light cone. But the singularity, however, can be

removed from the sum of F̂
(δ)

and F̂
(θ)

. Using the identity

1

[−(K · K)]3/2
= 1

−(K · u)

d

dτ

1√−(K · K)
(2.7)

in equation (2.5) yields

F (θ)
µν = − e√−(K · K)

uµKν − uνKµ

−(K · u)

∣∣∣∣
τ→τ ret(y)

τ→−∞

+ e

∫ τ ret(y)

−∞

dτ√−(K · K)

{
aµKν − aνKµ

−(K · u)
+

uµKν − uνKµ

[−(K · u)]2
[1 + (K · a)]

}
(2.8)

after integration by parts. Taking into account that 1/
√−(K · K) vanishes whenever

τ → −∞,1 we finally obtain the expression

F̂
ret

(y) = e

∫ τ ret(y)

−∞

dτ√−(K · K)

{
a ∧ K

r
+

u ∧ K

r2
[1 + (K · a)]

}
(2.9)

which is regular on the light cone. It diverges on the particle’s trajectory only. Symbol ∧
denotes the wedge product. In 2+1 electrodynamics, outgoing waves propagate not just at the
speed of light, but all speeds smaller than or equal to it. The invariant quantity

r = −(K · u) (2.10)

is an affine parameter on the timelike (null) geodesic that links y to z(τ ); it can be loosely
interpreted as the time delay between y and z(τ ) as measured by an observer moving with the

1 We assume that average velocities are not large enough to initiate particle creation and annihilation, so that ‘space
contribution’ |K| cannot match with an extremely large zeroth component K0.
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particle. Because the speed of light is set to unity, parameter r(τ ret) is also the spatial distance
between z(τ ret) and y as measured in this momentarily comoving Lorentz frame.

In three dimensions, the advanced Green’s function is nonzero in the past of the emission
point x. The advanced strength tensor

F̂
adv

(y) = e

∫ +∞

τ adv(y)

dτ√−(K · K)

{
a ∧ K

r
+

u ∧ K

r2
[1 + (K · a)]

}
(2.11)

is generated by the point charge during its entire future history following the advanced time
associated with y.

3. Bound and radiative parts of Noether quantities

Equation of motion of radiating charge will be derived in the following section via analysis of
the total flows of (retarded) electromagnetic field energy-momentum and angular momentum
across a hyperplane �t = {y ∈ M3 : y0 = t}. Noether quantities are given by surface
integrals:

pν
em(t) =

∫
�t

dσ0T
0ν (3.1)

Mµν
em (t) =

∫
�t

dσ0(y
µT 0ν − yνT 0µ). (3.2)

The electromagnetic field’s stress–energy tensor T̂ has the components

2πT µν = FµλF ν
λ − 1/4ηµνF κλFκλ, (3.3)

where F̂ is the non-local strength tensor (2.9).
The computation is not a trivial matter, since the Maxwell energy-momentum tensor

density evaluated at field point y ∈ �t is non-local. In odd dimensions, the retarded field
is generated by the portion of the world line ζ that corresponds to the particle’s history
before t ret(y). Since the stress–energy tensor is quadratic in field strengths, we should twice
integrate it over ζ . We integrate it also over two variables which parametrize �t in order
to calculate energy-momentum and angular momentum which flow across this plane. The
integrand describes the combination of outgoing electromagnetic waves emitted at instants
t1 and t2 before t. (The situation is pictured in figure 1.) We trace a series of stages in
calculations in the appendix; a detailed description is published in [18]. To summarize briefly,
the integration of the energy-momentum and angular momentum tensor densities over variables
which parametrize �t results twofold integrals, we obtain two-point and three-point functions
defined on the world line only, which are twice integrated over ζ . (See equations (A.31)–
(A.33) in the appendix where the integration of the energy-momentum tensor density in 2+1
dimensions is considered.)

All the three-point terms which contain the observation instant t belong to the (diverging)
bound parts of Noether quantities. They are permanently ‘attached’ to the charge and are
carried along with it. The radiation parts contain the two-point functions depending on
particle’s position and velocity referred to the instants t1 and t2 before t.

Having done reparametrization, we rewrite the two-point functions which arise in energy-
momentum and angular momentum in a manifestly covariant fashion:

p
µ

12 = u1,α

−uα
2 qµ + u

µ

2 qα

[−(q · q)]3/2
, m

µν

12 = z
µ

1 pν
12 − zν

1p
µ

12. (3.4)
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Figure 1. The integration of energy and momentum densities over the two-dimensional plane
y0 = t means the study of interference of outgoing electromagnetic waves generated by different
points on particle’s world line. Let the instant t1 be fixed. Outgoing electromagnetic waves
generated by the portion of the world line that corresponds to the interval −∞ < t2 < t1 combine
within the gray disc with radius k0

1 = t − t1. If the domain of integration t1 < t2 � t , the waves
joint together inside the dark disc with radius k0

2 = t − t ′2.

Index 1 indicates that the particle’s velocity or position is referred to the instant τ1 ∈ ]−∞, τ ]
while index 2 says that the particle’s characteristics are evaluated at instant τ2 � τ1. Here,
qµ = z

µ

1 − z
µ

2 defines the unique timelike geodesic connecting a field point z(τ1) ∈ ζ to
an emission point z(τ2) ∈ ζ . Since qµ(τ2, τ1) = −qµ(τ1, τ2), the reciprocity relations are
satisfied:

p
µ

21

∣∣
1↔2 = −p

µ

12, m
µν

21

∣∣
1↔2 = −m

µν

12 . (3.5)

The radiative parts of electromagnetic field’s energy-momentum and angular momentum
are as follows:

p
µ

R(τ ) = e2

2

∫ τ

−∞
dτ1

∫ τ1

−∞
dτ2

(
p

µ

12 + p
µ

21

)
, (3.6)

M
µν

R (τ ) = e2

2

∫ τ

−∞
dτ1

∫ τ1

−∞
dτ2

(
m

µν

12 + m
µν

21

)
. (3.7)

Our next task will be to elucidate geometrical sense of these expressions.
We take the first terms under the integral signs in equations (3.6), (3.7) and denote them

as gα
12 = (

p
µ

12,m
µν

12

)
. We integrate the two-point functions (3.4) over the portion of the world

line which corresponds to the interval −∞ < τ2 � τ1. We introduce the functions

Gα
ret(τ1) = e2

∫ τ1

−∞
dτ2 gα

12. (3.8)

Next we take the remaining terms gα
21; we change the order of integration over the domain

Dτ = {(τ1, τ2) ∈ R
2 : τ1 ∈] − ∞, τ ], τ2 � τ1}:∫ τ

−∞
dτ1

∫ τ1

−∞
dτ2 gα

21 =
∫ τ

−∞
dτ2

∫ τ

τ2

dτ1 gα
21. (3.9)
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Figure 2. The term (3.8) with integration over the portion of the world line before τ1 we call
‘retarded’. The term (3.11) with integration over the portion of the world line after τ1 we call
‘advanced’. For an observer placed at point z(τ1) ∈ ζ , the regular part (3.12) of Noether quantities
carried by electromagnetic field looks as the combination of incoming and outgoing radiations.
And yet the retarded causality is not violated. We still consider the interference of outgoing waves
presented at the observation plane �τ . The electromagnetic field carries information about the
charge’s past.

Since instants τ1 and τ2 label points at the same world line ζ , one can interchange indices
‘first’ and ‘second’ on the right-hand side of this equation. Taking into account relations (3.5),
we finally obtain∫ τ

−∞
dτ1

∫ τ1

−∞
dτ2 gα

21 = −
∫ τ

−∞
dτ1

∫ τ

τ1

dτ2 gα
12. (3.10)

The integrand coincides with that under integral sign on the right-hand side of equation (3.8)
while the domain of inner integration corresponds to the interval τ1 � τ2 � τ . We introduce
the function

Gα
adv(τ1, τ ) = e2

∫ τ

τ1

dτ2 gα
12. (3.11)

We see that the double integral in equation (3.6) can be expressed as one-half of Gret minus
one-half of Gadv integrated over the world line ζ :

Gα
R(τ ) = 1

2

∫ τ

−∞
dτ1

[
Gα

ret(τ1) − Gα
adv(τ, τ1)

]
. (3.12)

The situation is pictured in figure 2.
We evaluate the short-distance behaviour of the expression under the double integral in

equation (3.12). Let τ1 be fixed and τ1 − τ2 := � be a small parameter. With a degree of
accuracy sufficient for our purposes

√
−(q · q) = �, qµ = �

[
u

µ

1 − a
µ

1

�

2
+ ȧ

µ

1

�2

6

]
, u

µ

2 = u
µ

1 − a
µ

1 � + ȧ
µ

1

�2

2
.

(3.13)
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Substituting these into integrand of the double integral of equation (3.12) and passing to the
limit � → 0 yields regular expression

lim
τ2→τ1

[
1

2
u1,α

−uα
2 qµ + u

µ

2 qα

[−(q · q)]3/2
+

1

2
u2,α

−uα
1 qµ + u

µ

1 qα

[−(q · q)]3/2

]
= 1

3
(a1)

2u
µ

1 − 1

12
ȧ

µ

1 . (3.14)

Therefore, the subscript ‘R’ stands for ‘regular’ as well as ‘radiative’.
Alternatively, choosing the linear superposition

Gα
S(τ ) = 1

2

∫ τ

−∞
dτ1

[
Gα

ret(τ1) + Gα
adv(τ, τ1)

]
, (3.15)

we restore the singular parts of Noether quantities:

p
µ

S (τ ) = e2

2

∫ τ

−∞
dτ2

uµ(τ2)√−(q · q)
,

M
µν

S (τ ) = e2

2

∫ τ

−∞
dτ2

zµ(τ )uν(τ2) − zν(τ )uµ(τ2)√−(q · q)
.

(3.16)

Since this non-local term diverges, the subscript ‘S’ stands for ‘singular’ as well as ‘symmetric’.

4. Equation of motion of radiating charge

We therefore introduce the radiative part pR of energy-momentum (see equation (3.6)) and
postulate that it, and it alone, exerts a force on the particle. Singular part, pS, should be
coupled with particle’s three-momentum, so that ‘dressed’ charged particle would not undergo
any additional radiation reaction. Already renormalized particle’s individual three-momentum,
say ppart, together with pR constitute the total energy-momentum of our composite particle
plus field system: P = ppart + pR. Since P does not change with time, its time derivative
yields

ṗ
µ
part(τ ) = −ṗ

µ

R

= −e2

2

∫ τ

−∞
ds

[
uτ,α

−uα
s qµ + u

µ
s qα

[−(q · q)]3/2
+ us,α

−uα
τ qµ + uµ

τ qα

[−(q · q)]3/2

]
. (4.1)

(The overdot means the derivation with respect to proper time τ .) Here, index τ indicates that
the particle’s velocity or position is referred to the observation instant τ while index s says
that the particle’s characteristics are evaluated at instant s � τ .

Our next task is to derive expression which explain how the three-momentum of ‘dressed’
charged particle depends on its individual characteristics (velocity, position, mass, etc). We do
not make any assumption about the particle structure, its charge distribution and its size. We
only assume that the particle three-momentum ppart is finite. To find out the desired expression,
we analyse conserved quantities corresponding to the invariance of the theory under proper
homogeneous Lorentz transformations. The total angular momentum, say M, consists of
particle’s angular momentum z ∧ ppart and radiative part (3.7) of angular momentum carried
by electromagnetic field:

Mµν = zµ
τ pν

part(τ ) − zν
τp

µ
part(τ ) + M

µν

R (τ ). (4.2)

Having differentiated (4.2) and inserting equation (4.1), we arrive at the equality

uτ ∧ ppart = e2

2

∫ τ

−∞
ds

uτ ∧ us√−(q · q)
. (4.3)
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Apart from usual velocity term, the simplest solution contains also singular contribution (3.16)
from particle’s electromagnetic field:

p
µ
part(τ ) = m0u

µ(τ) +
e2

2

∫ τ

−∞
ds

uµ(s)√−(q · q)

= m0u
µ(τ) + p

µ

S (τ ). (4.4)

Near the coincidence limit s → τ the denominator of the integrand in equation (4.4) behaves
as τ − s, so that integral diverges logarithmically. Since ppart is proclaimed to be finite, the
‘bare’ mass m0 should absorb divergency within the renormalization procedure. To cancel the
infinity, Kazinski, Lyakhovich and Sharapov [2] add the term which, in our notations, looks
as follows:

δm = e2

2

∫ τ

−∞

ds√−(q · q)
(4.5)

(see [2], equation (38)). Taking it into account we obtain

p
µ
part(τ ) = muµ(τ) +

e2

2

∫ τ

−∞
ds

uµ(s) − uµ(τ)√−(q · q)
(4.6)

where already renormalized mass m is proclaimed to be finite.
The scalar product of particle three-velocity on the first-order time-derivative of particle

three-momentum (4.1) is as follows:

(ṗpart · uτ ) = e2

2

∫ τ

−∞
ds

[
(uτ · us)

(uτ · q)

[−(q · q)]3/2
+

(us · q)

[−(q · q)]3/2

]
. (4.7)

Since (u · a) = 0, the scalar product of particle acceleration on the particle three-momentum
(4.6) is given by

(ppart · aτ ) = e2

2

∫ τ

−∞
ds

(aτ · us)√−(q · q)
. (4.8)

Summing up (4.7) and (4.8) we obtain

d

dτ
(ppart · uτ ) = e2

2

∫ τ

−∞
ds

{
∂

∂τ

[
(uτ · us)√−(q · q)

]
+

(us · q)

[−(q · q)]3/2

}
. (4.9)

Alternatively, the scalar product of three-momentum (4.6) and three-velocity is as follows:

(ppart · uτ ) = −m +
e2

2

∫ τ

−∞
ds

(uτ · us) + 1√−(q · q)
. (4.10)

Further we compare its differential consequence with equation (4.9). A surprising feature of
the already renormalized dynamical mass m is that it depends on τ :

ṁ = e2

2

∫ τ

−∞
ds

(q · uτ ) − (q · us)

[−(q · q)]3/2
. (4.11)

It is interesting that similar phenomenon occurs in the theory which describes a point-like
charge coupled with massless scalar field in flat spacetime of three dimensions [19]. The
charge loses its mass through the emission of monopole radiation.

Having integrated derivative (4.11) over the world line ζ we obtain

m = m0 +
e2

2

∫ τ

−∞
dτ1

∫ τ1

−∞
dτ2

[
∂

∂τ1

(
1√−(q · q)

)
+

∂

∂τ2

(
1√−(q · q)

)]

= m0 +
e2

2

∫ τ

−∞

ds√−(q · q)
, (4.12)
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where m0 is an infinite ‘bare’ mass of the particle. Inserting this into (4.6) we arrive at the
equality p

µ
part(τ ) = m0u

µ
τ + p

µ

S which shows that particle’s momentum renormalization agrees
with the renormalization of mass.

The main goal of the present paper is to compute the effective equation of motion of
radiating charge in 2+1 dimensions. To do it we replace ṗ

µ
part on the left-hand side of

equation (4.1) by differential consequence of equation (4.6) where the right-hand side of
equation (4.11) substitutes for ṁ. At the end of a straightforward calculation, we obtain

maµ
τ = e2

2
aµ

τ − e2uτ,α

∫ τ

−∞
ds

−uα
s qµ + u

µ
s qα

[−(q · q)]3/2
+

e2

2
aµ

τ

∫ τ

−∞

ds√−(q · q)
. (4.13)

The first term on the right-hand side of this equation looks horribly irrelevant. It arises also
in ([2], equation (40)) where it is called ‘the local part of Lorentz–Dirac (LD) force’. It
is worth noting that Kazinski, Lyakhovich and Sharapov regularize the local part (2.6) of
the retarded electromagnetic field and its non-local part (2.5) separately. (More exactly, the
authors manipulate with convolution of these terms with particle’s velocity taken at the instant
τ .) Since the local part is proportional to particle’s acceleration, they move it to the left-hand
side of equation (2.1) where one-half of the squared charge is proclaimed to be absorbed by
mass. The remaining non-local part (the second term in equation (2.1)) together with the
third term of this equation constitute ‘the renormalized LD force’ which alone determines the
radiation reaction.

But the finite first term in equation (2.1) is the integral part of Lorentz self-force and,
therefore, cannot be cancelled within the regularization procedure. According to section 2,
the sum of local (2.6) and non-local (2.8) parts of electromagnetic field results the non-local
expression (2.9) for the retarded electromagnetic field. The field strengths at point z(τ ) ∈ ζ

generated by the portion of the world line before the observation instant τ looks as follows:

F
µα
ret (τ ) = e

∫ τ

−∞

ds√−(q · q)

{
u

µ
s qα − uα

s qµ

r2
[1 + (as · q)] +

a
µ
s qα − aα

s qµ

r

}

=
∫ τ

−∞
ds f µα(τ, s). (4.14)

Its convolution with particle’s velocity is equal to the combination of the first and second terms
on the right-hand side of equation (2.1):

euτ,αF
µα
ret (τ ) = e2

2
aµ

τ − e2uτ,α

∫ τ

−∞
ds

−uα
s qµ + u

µ
s qα

[−(q · q)]3/2
. (4.15)

(It may be checked via using the equality (2.7) and integration by parts.) This relation prompts
that the retarded Lorentz self-force should be substituted for this combination. If an external
electromagnetic field F̂ ext is applied, the equation of motion of radiating charge in 2+1 theory
becomes

maµ
τ = euτ,αF

µα
ret (τ ) +

e2

2
aµ

τ

∫ τ

−∞

ds√−(q · q)
+ euτ,αF

µα
ext . (4.16)

The non-local term in equation (4.16) which is proportional to particle’s acceleration a(τ)

arises also in [2]. It gives rise to the renormalization of mass and provides proper short-distance
behaviour of the perturbations due to the particle’s own field. If s → τ the integrand tends to
the three-dimensional analogue of the Abraham radiation reaction vector:

lim
s→τ

[
euτ,αf µα(τ, s) +

e2

2

aµ
τ√−(q · q)

]
= 2

3
e2(ȧµ − a2uµ). (4.17)

(All quantities on the right-hand side refer to the instant of observation τ .)
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If one moves the second term to the left-hand side of equation (4.16), they restore
unphysical motion equation which follows from variational principle: it involves an infinite
‘bare’ mass and divergent Lorentz self-force.

5. Conclusions

In the present paper, we calculate the total flows of (retarded) electromagnetic field energy,
momentum and angular momentum which flow across the plane �t = {y ∈ M3 : y0 = t}.
We integrate the stress–energy tensor over two variables which parametrize �t . Thanks
to integration we reduce the support of the retarded and the advanced Green’s functions to
particle’s trajectory.

The Dirac scheme which manipulates fields on the world line only is the key point of
investigation. By fields we mean the convolution euν(τ1)F

νµ

(θ) of three-velocity and non-local
part (2.5) of the retarded strength tensor evaluated at point z(τ1) ∈ ζ ; the torque of this
‘Lorentz θ -force’ arises in electromagnetic field’s total angular momentum. (Singular δ-term
(2.6) is defined on the light cone; it is meaningless since both the field point, z(t1), and the
emission point, z(t2), lie on the timelike world line.) The retarded and advanced quantities
arise naturally. The retarded Lorentz self-force as well as its torque contain integration over
the portion of the world line which corresponds to the interval −∞ < t2 � t1. Domain of
integration of their ‘advanced’ counterparts corresponds to the interval t1 � t2 � t .

Noether quantity Gα
em carried by electromagnetic field consists of terms of two quite

different types: (i) singular, Gα
S, which is permanently ‘attached’ to the source and carried

along with it; (ii) radiative, Gα
R, which detaches itself from the charge and leads an independent

existence. The former is the half-sum of the retarded and advanced expressions, integrated
over ζ , while the latter is the integral of one-half of the retarded quantity minus one-half of
the advanced one. Within the regularization procedure, the bound terms Gα

S are coupled with
the energy-momentum and angular momentum of ‘bare’ source, so that already renormalized
characteristics Gα

part of charged particle are proclaimed to be finite. Noether quantities which
are properly conserved become

Gα = Gα
part + Gα

R.

The energy-momentum balance equations define the change of particle’s three-momentum
under the influence of an external electromagnetic field where loss of energy due to radiation
is taken into account. The angular momentum balance equations explain how this already
renormalized three-momentum depend on particle’s individual characteristics. They constitute
the system of three linear equations in three components of particle’s momentum. Its rank
is equal to 2, so that an arbitrary scalar function arises naturally. It can be interpreted as a
dynamical mass of ‘dressed’ charge which is proclaimed to be finite. A surprising feature
is that this mass depends on the particle’s history before the instant of observation when the
charge is accelerated. Already renormalized particle’s momentum contains, apart from usual
velocity term, also non-local contribution from point-like particle’s electromagnetic field.

Having substituted this expression in the energy-momentum balance equations, we derive
the three-dimensional analogue of the Lorentz–Dirac equation

maµ
τ = euτ,αF

µα
ret (τ ) +

e2

2
aµ

τ

∫ τ

−∞

ds√−(q · q)
+ euτ,αF

µα
ext .

The loss of energy due to radiation is determined by the work done by the Lorentz force of point-
like charge acting upon itself. Non-local term which is proportional to particle’s acceleration
provides finiteness of the self-action. It is intimately connected with the renormalization of
mass. The third term describes influence of an external field.
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In [1, 2], the Lorentz self-force is replaced with the second term of the right-hand side of
equation (4.15) which does not possess quite clear physical sense. Besides, in [1] the non-local
term which gives rise to the infinite mass renormalization and provides proper short-distance
behaviour is as follows:

e2

2
aµ

τ

∫ τ

−∞

ds

|τ − s| .

As noted in [2], there is a little sense in finiteness near the coincidence limit s → τ since the
expression for radiation reaction is not invariant with respect to reparametrization.

In this paper, we develop a convenient technique which allows us to integrate the non-
local stress–energy tensor over the spacelike plane. The next step will be to implement this
strategy to a point particle coupled to massive scalar field following an arbitrary trajectory
on a flat spacetime. The Klein–Gordon field generated by the scalar charge holds energy
near the particle. This circumstance makes unclear the procedure of decomposition of the
energy-momentum into bound and radiative parts.

In [20] the remarkable correspondence is established between dynamical equations which
govern the behaviour of superfluid 4He films and Maxwell equations for electrodynamics in
2+1 dimensions (see also [21, 22])2. Perhaps the effective equation of motion (4.16) will be
useful in the study of phenomena in superfluid dynamics which correspond to the radiation
friction in 2+1 electrodynamics.

Acknowledgments

I am grateful to Professor V Tretyak for continuous encouragement and for a helpful reading of
this manuscript. I would like to thank A Duviryak and R Matsyuk for many useful discussions.

Appendix. Energy-momentum of electromagnetic field in 2+1 dimensions

In this section, we trace a series of stages in calculation of the surface integral

pν
em(t) =

∫
�t

dσ0T
0ν (A.1)

which gives the energy-momentum carried by electromagnetic field of a point-like source
arbitrarily moving in M3. Calculation of total angular momentum is virtually identical to that
presented below, and we shall not bother with the details.

The Huygens principle does not hold in three dimensions: a point z(t1) ∈ ζ produces
the disc of radius t − t1 in the observation plane �t = {y ∈ M3 : y0 = t} (see figure 1).
The integration of energy and momentum densities over �t means the study of interference
of outgoing electromagnetic waves emitted by different points on ζ :

pα
em =

∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ k0
1

0
dR

∫ 2π

0
dϕJ t0α

12 +
∫ t

−∞
dt1

∫ t

t1

dt2

∫ k0
2

0
dR

∫ 2π

0
dϕJ t0α

12 . (A.2)

The first multiple integral calculates the interference of the disc emanated by fixed point
z(t1) ∈ ζ with radiation generated by all the points before the instant t1. The second fourfold
integral gives the contribution of points after t1.

2 I wish to thank O Derzhko for drawing these papers to my attention.
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The integrand

2πt
αβ

12 = f αλ
(1) f

β

(2)λ − 1
4ηαβf

µν

(1) f
(2)
µν (A.3)

describes the combination of field strength densities at y ∈ �t

f̂(a)(y) = e√−(Ka · Ka)

(
v̇a ∧ Ka

ra

+
va ∧ Ka

(ra)2

[
γ −2

a + (Ka · v̇a)
])

(A.4)

generated by emission points z(t1) ∈ ζ and z(t2) ∈ ζ . The Jacobian J corresponds to the
coordinate transformation

y0 = t yi = αzi(t1) + βzi(t2) + Rωi
jn

j , (A.5)

where α + β = 1 and nj = (cos ϕ, sin ϕ). Orthogonal matrix

ω =
(

n1
q −n2

q

n2
q n1

q

)
(A.6)

rotates space axes till new y1-axis be directed along two-vector q := z(t1)− z(t2). (We denote
ni

q = qi/q.)
It is worth noting that time variables t1 and t2 parametrize the same world line ζ . The

coordinate transformation (A.5) is invariant with respect to the following reciprocity:

ϒ : t1 ↔ t2, α ↔ β, ϕ 	→ ϕ + π. (A.7)

This symmetry provides identity of domains of fourfold integrals in energy-momentum (A.2).
It is obvious that the support of double integral

∫ t

−∞ dt1
∫ t

t1
dt2 coincides with the support

of the integral
∫ t

−∞ dt2
∫ t2
−∞ dt1. Since instants t1 and t2 label different points at the same world

line ζ , one can interchange the indices ‘first’ and ‘second’ in the second fourfold integral of
equation (A.2). Via interchanging these indices, we finally obtain

∫ t

−∞ dt1
∫ t1
−∞ dt2 instead

of initial
∫ t

−∞ dt1
∫ t

t1
dt2. Taking into account these circumstances in the expression (A.2) for

energy-momentum carried by electromagnetic field, we finally obtain

pα
em =

∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ k0
1

0
dR

∫ 2π

0
dϕJ t0α (A.8)

where the new stress–energy tensor is symmetric in the pair of indices 1 and 2:

2πt0α = 2π
(
t0α
12 + t0α

21

)
= f 0λ

(1)f
α
(2)λ + f 0λ

(2)f
α
(1)λ − 1

4η0α
[
f

µν

(1) f
(2)
µν + f

µν

(2) f
(1)
µν

]
. (A.9)

We see that it is sufficient to consider the situation when t1 � t2 pictured in figure A1. The
gray disc with radius k0

1 = t − t1 is filled up by non-concentric circles with radii R ∈ [
0, k0

1

]
.

Points in an R-circle are distinguished by angle ϕ.
To calculate the total flows (A.8) of the electromagnetic field energy and momentum

which flow across the plane �t , we should integrate the Maxwell energy-momentum tensor
density (A.9) over angular variable ϕ, over radius R and, finally, over time variables t1 and
t2. Integration over ϕ is a difficult undertaking. The difficulty resides mostly with norms
‖Ka‖2 = −ηαβKα

a K
β
a of separation vectors Ka = y − za which result in elliptic integrals. To

avoid dealing with them we modify the coordinate transformation (A.5). We fix the parameter
β in such a way that the norm ‖K1‖2 becomes proportional to the norm ‖K2‖2:

‖K1‖2 = −β

α
‖K2‖2. (A.10)
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Figure A1. The interference picture in the plane �t . The points z(t1) ∈ ζ and z(t2) ∈ ζ, t2 < t1,

emanate the radiation which filled up the discs centred at z1 and z2, respectively. The gray disc
with radius k0

1 = t − t1 is filled up by non-concentric circles centred at the line crossing both the
points z1 and z2. If parameter β vanishes the circle is centred at z1, its radius is equal to k0

1 . If
β = β0 < 0, the circle reduces to the point A labelled by the box symbol. In case of intermediate
value β0 < β < 0, we have the circle of radius R with the centre at point O between z1 and A.

Keeping in mind the identity α + β = 1, we arrive at the quadratic algebraic equation on β

which does not contain the angle variable:

R2 = α
(
k0

1

)2
+ β

(
k0

2

)2 − αβq2. (A.11)

We choose the root which vanishes when R = k0
1:

β = 1

2q2

(−(
k0

2

)2
+

(
k0

1

)2
+ q2 +

√
D

)
,

D = [(
k0

2

)2 − (
k0

1

)2 − q2
]2 − 4q2

[(
k0

1

)2 − R2
]
.

(A.12)

If q2 tends to zero while t1 �= t2, it becomes the unique root of the linear equation on β

originated from equation (A.11) with q2 = 0.
If R = 0, the R-circle reduces to the point A with the coordinates

(
zi

1 − β0q
i
)
, where

β0 = β|R=0. If R = k0
1 then β = 0 and the circle is centred at zi(t1) (see figure A1).

Differential chart of the coordinate transformation (A.5) where R(β) is given (implicitly)
by equation (A.12) yields the Jacobian

J = (1/2)
[(

k0
2

)2 − (
k0

1

)2 − q2
]

+ βq2 − qR cos ϕ. (A.13)

To calculate the energy-momentum (A.8) carried by electromagnetic field, we should first
perform the integration over the angle. When facing this problem it is convenient to mark out
ϕ-dependent terms in expressions under the integral sign. In the Maxwell energy-momentum
tensor density (A.9), we distinguish the second-order differential operator

T̂ a = Da ∂2

∂t1∂t2
+ Ba ∂

∂t1
+ Ca ∂

∂t2
+ Aa (A.14)

which has been labelled according to its dependence on the combination of components of the
separation vectors K1 and K2, or on the Jacobian (A.13). The components of these vectors
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are involved in ϕ-dependent coefficients

Da = 1

2π

∫ 2π

0
dϕ

a

r1r2
, Ba = 1

2π

∫ 2π

0
dϕ

ac2

r1(r2)2
,

Ca = 1

2π

∫ 2π

0
dϕ

ac1

(r1)2r2
, Aa = 1

2π

∫ 2π

0
dϕ

ac1c2

(r1)2(r2)2
,

(A.15)

where the factor a is replaced by Kα
1 K

β

2 ,Kα
1 ,K

β

2 , J or 1 for T̂ αβ

12 , T̂ α
1 , T̂ β

2 , T̂ J or T̂ 0,
respectively.

To distinguish the partial derivatives in time variables, we rewrite the operator (A.14) as
the sum of the second-order differential operator

�̂a = ∂2

∂t1∂t2
Da +

∂

∂t1

(
Ba − ∂Da

∂t2

)
+

∂

∂t2

(
Ca − ∂Da

∂t1

)
(A.16)

and the ‘tail’

πa = ∂2Da

∂t1∂t2
− ∂Ba

∂t1
− ∂Ca

∂t2
+ Aa. (A.17)

For a smooth function f (t1, t2), we have

T̂ a(f ) = �̂a(f ) + f πa. (A.18)

Cumbersome calculations which is presented in [18] give the expressions

π0 = 0, πJ = 0,

πα
1 = vα

1

(
B0 − ∂D0

∂t2

)
, π

β

2 = v
β

2

(
C0 − ∂D0

∂t1

)
,

παJ
1 = vα

1

(
BJ − ∂DJ

∂t2

)
, π

βJ

2 = v
β

2

(
CJ − ∂DJ

∂t1

)
,

π
αβ

12 = vα
1

(
Bβ

2 − ∂Dβ

2

∂t2

)
+ v

β

2

(
Cα

1 − ∂Dα
1

∂t1

)
− vα

1 v
β

2 D
0,

(A.19)

which allow us to rewrite the integral of J tαβ over ϕ in terms of differential operators �̂a . So,
the integral of energy density t00 over the angular variable has the form∫ 2π

0
dϕJ t00 = e2[I�̂0(κ) − I ′�̂J (µ)], (A.20)

where functions

κ = k0
1k

0
2

∂2σ

∂t1∂t2
+ k0

1
∂σ

∂t1
+ k0

2
∂σ

∂t2
− 1

2

∂σ

∂t1

∂σ

∂t2
+ σµ,

µ = 1

2

∂2σ

∂t1∂t2
+ 1.

(A.21)

World function σ(t1, t2) of two timelike related points, z(t1) ∈ ζ and z(t2) ∈ ζ , is equal to
one-half of the square of vector qµ = zµ(t1) − zµ(t2), taken with opposite sign:

σ(τ1, τ2) = − 1
2 (q · q). (A.22)
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Symbols I, I ′ denote β-dependent factors

I = 1√−βα
, I ′ =

√
−β

α
+

√
α

−β
. (A.23)

The mixed spacetime components of the stress–energy tensor (A.9) have the form∫ 2π

0
dϕJ t0i = e2

2
I

[
�̂i

1

(
∂λ2

∂t1

)
+ �̂i

2

(
∂λ1

∂t2

)
+ �̂0 (

vi
2λ1 + vi

1λ2
)

− ∂

∂t1

(
vi

2
∂λ1

∂t2
D0

)
− ∂

∂t2

(
vi

1
∂λ2

∂t1
D0

)]
− e2

2
I ′�̂J

(
vi

1 + vi
2

)
, (A.24)

where

λ1 = k0
1
∂σ

∂t1
+ σ, λ2 = k0

2
∂σ

∂t2
+ σ. (A.25)

We see that the integration of electromagnetic field’s stress–energy tensor over ϕ yields
integrals being functions of the end points only. In the following section, we classify them
and consider the problem of integration over the remaining variables.

A.1. Integration over time variables and β

Our purpose in this section is to develop the mathematical tools required in a surface integration
of the energy-momentum tensor density in 2+1 electrodynamics. Integration over angle
variable results in the combination of partial derivatives in time variables:

pα
em(t) =

e2
∫ t

−∞
dt1

∫ t1

−∞
dt2

e2
∫ t

−∞
dt2

∫ t

t2

dt1




(
∂2Gα

12

∂t1∂t2
+

∂Gα
1

∂t1
+

∂Gα
2

∂t2

)
. (A.26)

Two double integrals over (proper) time variables (one about the other) describe integration
over the domain Dt = {(t1, t2) ∈ R

2 : t1 ∈ ]−∞, t], t2 � t1}.
By virtue of the equality∫ 0

β0

dβ
∂G(β, t1, t2)

∂ta
= ∂

∂ta

[∫ 0

β0

dβG(β, t1, t2)

]
+ G(β0, t1, t2)

∂β0(t1, t2)

∂ta
, (A.27)

the triple integral (A.26) can be rewritten as follows:

pα
em(t) = e2

[
lim
k0

1→0

∫ 0

β0

dβGα
12

]t2=t

t2→−∞
+ e2

∫ t

−∞
dt2 lim

k0
1→0

[
Gα

12

∣∣
β=β0

∂β0

∂t2

]

− e2
∫ t

−∞
dt2 lim

�t→0

∫ 0

β0

dβ

[
∂Gα

12

∂t2
+ Gα

1

]
k0

1=k0
2−�t

+ e2
∫ t

−∞
dt2 lim

k0
1→0

[∫ 0

β0

dβGα
1

]

+ e2
∫ t

−∞
dt1 lim

�t→0

[∫ 0

β0

dβGα
2

]
k0

2=k0
1 +�t

− e2
∫ t

−∞
dt1 lim

t2→−∞

[∫ 0

β0

dβGα
2

]

+

e2
∫ t

−∞
dt1

∫ t1

−∞
dt2

e2
∫ t

−∞
dt2

∫ t

t2

dt1




([
∂Gα

12

∂t2
+ Gα

1

]
β=β0

∂β0

∂t1
+ Gα

2

∣∣
β=β0

∂β0

∂t2

)
. (A.28)
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The functions under integral signs are as follows:

G0
12 = ID0κ − I ′DJ µ,

G0
1 = −

√
−β

α
κ

v2
1

‖r1‖3
− I ′µ

∂

∂β

(
β

‖r1‖
)

,

G0
2 =

√
α

−β
κ

v2
2

‖r2‖3
− I ′µ

∂

∂β

(
α

‖r2‖
)

,

(A.29)

Gi
12 = I

2

[
∂λ1

∂t2
Di

2 +
∂λ2

∂t1
Di

1 +
(
vi

1λ2 + vi
2λ1

)
D0

]
− I ′

2

(
vi

1 + vi
2

)
DJ ,

Gi
1 = I

2

β

‖r1‖3

[
∂λ1

∂t2

(
αqiv2

1 + r0
1 vi

1

)
+

∂λ2

∂t1

(−βqiv2
1 + r0

1 vi
1

)
+

(
vi

1λ2 + vi
2λ1

)
v2

1

]

− I ′

2

(
vi

1 + vi
2

) ∂

∂β

(
β

‖r1‖
)

, (A.30)

Gi
2 = I

2

α

‖r2‖3

[
∂λ1

∂t2

(
αqiv2

2 + r0
2 vi

2

)
+

∂λ2

∂t1

(−βqiv2
2 + r0

2 vi
2

)
+

(
vi

1λ2 + vi
2λ1

)
v2

2

]

− I ′

2

(
vi

1 + vi
2

) ∂

∂β

(
α

‖r2‖
)

.

All the terms involved in equation (A.28) possess specific small parameter. This
circumstance allows us to expand the integrands into power series and perform the integration.

(i) Integrals where t1 → t . The lower limit β0 tends to 0 if k0
1 = t − t1 vanishes. The

upper limit is equal to zero too. Then the integral over parameter β vanishes whenever
an expression under integral sign is smooth. So, we must limit our computations to the
singular terms only. These integrals do not contribute in the energy-momentum at all.

(ii) Integrals where t1 = t2. The small parameter is the positively valued difference
�t = t1 − t2. The resulting terms belong to the bound part of energy-momentum.
(To that which is permanently ‘attached’ to the charge and is carried along with it.)

(iii) Integrals where t2 → −∞. The lower limit β0 tends to 0 if k0
2 = t−t2 increases extremely.

Then the integral over parameter β vanishes whenever an expression under integral sign
is smooth. So, we must limit our computations to the singular terms only. The resulting
terms belong to the bound electromagnetic ‘cloud’ which cannot be separated from the
charged particle.

(iv) Integrals at point where β = β0. In this case, the radius of the smallest circle pictured in
figure A1 vanishes and it reduces to the point A. The contribution in pα

em is given by the
last line of equation (A.28). It can be rewritten as the combination of partial derivatives
in time variables and non-derivative ‘tail’. After integration over t1 or t2, the derivatives
are coupled with bound terms; the sum is absorbed by three-momentum of ‘bare’ particle
within the renormalization procedure. The ‘tail’ contains radiative terms which detach
themselves from the charge and lead an independent existence.

Summing up all the contributions (i)–(iv), we finally obtain

p0
em(t) = e2

1 + 1/2
√

1 − v2
1

1 +
√

1 − v2
1

1√
1 − v2

1

∣∣∣∣∣∣
t1=t

t1→−∞

+
e2

2

∫ t

−∞
dt2

1√
2σ(t, t2)

+ e2
∫ t

−∞
dt1

∫ t1

−∞
dt2

×
[
− (v1 · v2)q

0

[2σ(t1, t2)]3/2
+

1

2

(v1 · q)

[2σ(t1, t2)]3/2
+

1

2

(v2 · q)

[2σ(t1, t2)]3/2

]
, (A.31)
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pi
em(t) = e2

1 + 1/2
√

1 − v2
1

1 +
√

1 − v2
1

vi
1√

1 − v2
1

∣∣∣∣∣∣
t1=t

t1→−∞

+
e2

2

∫ t

−∞
dt2

vi
2√

2σ(t, t2)
+ e2

∫ t

−∞
dt1

∫ t1

−∞
dt2

×
[
− (v1 · v2)q

i

[2σ(t1, t2)]3/2
+

1

2

(v1 · q)vi
2

[2σ(t1, t2)]3/2
+

1

2

(v2 · q)vi
1

[2σ(t1, t2)]3/2

]
, (A.32)

where σ denotes the two-point function (A.22). The finite terms which depend on the end
points only are non-covariant. They express the ‘deformation’ of electromagnetic ‘cloud’ due
to the choice of the coordinate-dependent hole around the particle in the integration surface
�t . We neglect these structureless terms. The single integrals describe covariant singular part
of energy-momentum carried by electromagnetic field. They arise from the following sum of
‘three-point functions’ which depend on particle’s position and velocity referred to the instants
t1 and t2 before the observation instant t as well as on t itself:

e2

2

∫ t

−∞
dt2

v
µ

2√
2σ(t, t2)

= e2

2

∫ t

−∞
dt2

v
µ

2√
(2t − t1 − t2)2 − q2

∣∣∣∣∣
t1=t

t1=t2

+
e2

2

∫ t

−∞
dt1

v
µ

1√
(2t − t1 − t2)2 − q2

∣∣∣∣∣
t2=t1

t2→−∞
. (A.33)

(It is worth noting that the denominator evaluated at the remote past when t2 → −∞
vanishes even if t1 → −∞ too.) Two-point functions in between the square brackets of
equations (A.31) and (A.32) determine the radiation reaction in 2+1 electrodynamics.
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